Bibliography¶
Takuji Nishimura. Tables of 64-bit mersenne twisters. ACM Transactions on Modeling and Computer Simulation (TOMACS), 10(4):348–357, 2000. doi:10.1145/369534.369540.
Vladimir Batagelj and Ulrik Brandes. Efficient generation of large random networks. Physical Review E, 71(3):036113, 2005. doi:10.1103/PhysRevE.71.036113.
Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. science, 286(5439):509–512, 1999. doi:10.1126/science.286.5439.509.
Mohsen Bayati, Jeong Han Kim, and Amin Saberi. A sequential algorithm for generating random graphs. Algorithmica, 58(4):860–910, 2010. doi:10.1007/s00453-009-9340-1.
Fan Chung and Linyuan Lu. Connected components in random graphs with given expected degree sequences. Annals of combinatorics, 6(2):125–145, 2002. doi:10.1007/PL00012580.
Joel C Miller and Aric Hagberg. Efficient generation of networks with given expected degrees. In International Workshop on Algorithms and Models for the Web-Graph, 115–126. Springer, 2011. doi:10.1007/978-3-642-21286-4_10.
Sinan G Aksoy, Tamara G Kolda, and Ali Pinar. Measuring and modeling bipartite graphs with community structure. Journal of Complex Networks, 5(4):581–603, 2017. doi:10.1093/comnet/cnx001.
Paul Erdös and Tibor Gallai. Graphs with prescribed degrees of vertices. Mat. Lapok, 11:264–274, 1960.
Sheshayya A Choudum. A simple proof of the erdos-gallai theorem on graph sequences. Bulletin of the Australian Mathematical Society, 33(1):67–70, 1986. doi:10.1017/S0004972700002872.
Daniel J Kleitman and Da-Lun Wang. Algorithms for constructing graphs and digraphs with given valences and factors. Discrete Mathematics, 6(1):79–88, 1973. doi:10.1016/0012-365X(73)90037-X.
Mark EJ Newman. Mixing patterns in networks. Physical review E, 67(2):026126, 2003. doi:10.1103/PhysRevE.67.026126.
Bernard A Galler and Michael J Fisher. An improved equivalence algorithm. Communications of the ACM, 7(5):301–303, 1964. doi:10.1145/364099.364331.
Zvi Galil and Giuseppe F Italiano. Data structures and algorithms for disjoint set union problems. ACM Computing Surveys (CSUR), 23(3):319–344, 1991. doi:10.1145/116873.116878.
Mikko Kivelä, Jordan Cambe, Jari Saramäki, and Márton Karsai. Mapping temporal-network percolation to weighted, static event graphs. Scientific reports, 8(1):1–9, 2018. doi:10.1038/s41598-018-29577-2.
Andrew Mellor. Event graphs: advances and applications of second-order time-unfolded temporal network models. Advances in Complex Systems, 22(03):1950006, 2019. doi:10.1142/S0219525919500061.
Arash Badie-Modiri, Abbas K Rizi, Márton Karsai, and Mikko Kivelä. Directed percolation in temporal networks. Physical Review Research, 4(2):L022047, 2022. doi:10.1103/PhysRevResearch.4.L022047.
Arash Badie-Modiri, Abbas K Rizi, Márton Karsai, and Mikko Kivelä. Directed percolation in random temporal network models with heterogeneities. Physical Review E, 105(5):054313, 2022. doi:10.1103/PhysRevE.105.054313.
Arash Badie-Modiri, Márton Karsai, and Mikko Kivelä. Efficient limited-time reachability estimation in temporal networks. Physical Review E, 101(5):052303, 2020. doi:10.1103/PhysRevE.101.052303.
Stefan Heule, Marc Nunkesser, and Alexander Hall. Hyperloglog in practice: algorithmic engineering of a state of the art cardinality estimation algorithm. In Proceedings of the 16th International Conference on Extending Database Technology, 683–692. 2013. doi:10.1145/2452376.2452456.